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The traditional method of solving the helically symmetric plasma equilibrium equation, of 
the form L[G] = F(G, r) where L is an elliptic linear operator, has been the simple iteration 
L[G”“] = F(G”, r). A model of a Tokomak equilibrium is constructed and used to illustrate 
the divergence of the simple iteration for plasma equilibria with magnetic islands. Although 
the problem of equilibria with magnetic islands is two dimensional, for small islands the 
numerical stability of the simple iteration may be analyzed using a one-dimensional equation 
similar to the linearized equilibrium equation used to analyze physical (resistive) instability. 
This analysis is used to prove that any equilibria of the Tokamak type with small islands 
cannot be obtained by the simple iteration and to illustrate the superlinear convergence of 
Newton’s method on these problems. The implementation of Newton’s method is discussed 
and examples are given. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we consider methods for solving the equation describing mechanical 
equilibrium of a plasma in a magnetic field, in situations with helical symmetry 
having dependence on only two variables r and u E mtl + kz, where Y, 8, z form a 
cylindrical coordinate system. Defining 

GskrAB-mA, 

and 

H-krB,-mB,, (1) 

with A the vector potential and B the magnetic field, one finds [l] from B =V x A, 
j=VxB, andjxB=Vpthat H=H(G),p=p(G), and 

a2G 1 m2-k2r2 E+m2+k2r2 3’6 
-$F+- r m2+ k2r2 ar r2 au2 
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Equation (2) can be thought of as one component of the vector equation 
V x (V x A) = j with the equilibrium equation constraining j [j = aB + (B x Vp)/B2, 
where 0 is a scalar, which follows from j x B = VP]. Similar but more complicated 
systems of equations have been written to describe three-dimensional plasma equi- 
libria (see, e.g., Ref. [2]). We use an Eulerian formulation of the plasma equilibria 
problem, which does not prescribe the topology of magnetic surfaces, in contrast to 
the Lagrangian formulation sometimes used (see, e.g., Refs. [3,4]). 

Mathematically, the plasma equilibrium equation is of the form 

UGI = F(G, ~1, (3) 

where L is a elliptic linear operator on G(r, U) and F is a nonlinear functional of 
G(r, u). In this paper, we consider solving an equation of this general form in a 
nearly one-dimensional case with G(r, U) = G,(r) + G,(r, u), where G,(r) has a max- 
imum or minimum and G, 3 G,. In this case, any slight dependence of G on U, 
causes the contour plot of G(r, U) to have islands, that is, the ridge (maximum) or 
valley (minimum) of G breaks up into regions with closed G contours. 

Traditionally (see, e.g., Ref. [S] ), a method we will term simple iteration has 
been used to solve Eq. (3). Simple iteration consists of calculating the successive 
iterates G”‘” from 

L[ G--J = F( Gold, r). (4) 

The rationale for this approach has been twofold: (1) to take advantage of efficient 
linear solvers for the operator L, and (2) to avoid difficulties involved in taking 
derivatives of F. However, as we point out here there are interesting problems 
involving magnetic islands for which simple iteration fails. Other situations (field 
reversed compact torus) where simple iteration fails have been noted [6]. 

Simple examples are perhaps helpful. Consider the nonlinear equation G = G1”. 
A graphical illustration of simple iteration on this equation is shown in Fig. 1. The 
iteration clearly diverges from the root G=O, which is connected with the infinite 
derivative of G1’* at G = 0. An analogous situation can hold for Eq. (2) as will be 
seen. 

One can construct simple, analytically solvable cases of Eq. (2) where simple 
iteration fails. For example, consider the case with k= 0, p =O, a strong B, 
magnetic field (so that H is approximately constant), and dH/dG a linear function 
of G. Equation (2) is then approximately of the form 

d2G 1 aG 1 a2G 
(!yZ+;I+7S=V2G=~+/3G. (5) 

Natural boundary conditions are regularity of G at the origin and a prescribed 
value of G at the outer wall, assumed to be at r =a. Simple iteration of Eq. (5) 
diverges when IpI > rc2/u2, where K = 2.405... is the first zero of J,(X). 

From a practical standpoint it is helpful to understand the divergence in more 
detail. Let G, be the exact solution of Eq. (5). The error e = G - G, at each step of 
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FIG. 1. Graph depicting simple iteration of the equation G= 6”‘. The iteration diverges from ?he 
root G=O. 

the simple iteration satisfies V2(enew) = /I(&““). By expanding in terms of eigenfunc- 
tions of the Laplacian, one sees that the error grows unless fl is less than rc2/a2, the 
smallest absolute eigenvalue of V2. For example, if the error at the first step is 
e” = sJ,(~r/a), then the sequence of iterates is 

e” = &J,(J+), 

e’ =E 

For p > JC~/~*, as assumed, the sequence diverges. 
This example shows that although Eq. (5) is two dimensional, the divergent 

mode for the iteration is one dimensional and has no 6 dependence. Thus we could 
have considered iteration of the one-dimensional version of Eq. (5) from the outset. 
In this paper we will use this approach and first study the one-dimensional version 
of Eq. (2). After having developed techniques to solve the one-dimensional problem, 
we then apply them to the two-dimensional problem. 

II. FORMULATION OF A ONE-DIMENSIONAL MODEL 

A case of interest that results in a considerable simplification of Eq. (2) is the case 
of m = 2 islands in the Tokamak [7]. The toroidal plasma (see Fig. 2) in t 
Tokamak is modeled by a cylinder with identified ends as shown in Fig. 3. T 
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FIG. 2. Torus and cross section. 

major radius of the torus is denoted by R and the minor radius by a. By periodicity, 
k is constrained to be n/R where n is an integer. The case n = - 1 and R/a = 3 will 
be used as an example for numerical calculations. We assume pressure is zero and 
k is small. Equation (2) becomes approximately in this case 

L[G,=;(rG’)‘+$$= -H g+f =8’(G), 
( 1 

where the symbol ’ is used to denote the radial derivative. In the Tokamak, B, < B, 
and consequently H s krB, - mB, N - m B,, where B, is the central toroidal field 
(B,- B,). Using the notation cs s dH/dG ((T = j/B, where j is the plasma current) 
and nondimensionalizing (Gal&, --f G, r/a + Y, oa -+ 0) we obtain the approximate 
equation 

L[G] =2(0(G) - 4). 

[Equation (7) is the same as an equation given in Ref. [7], but uses a different 
choice of dimensionless units.] 

Neglecting the effect of toroidal curvature, Tokamak equilibria are nominally one 
dimensional and specified by a single profile, say the current profile a(r). Clearly 
Eq. (7), with o(r) given, can readily be solved for G(r). This can be done for any 
choice of m and iz, providing equivalent descriptions of the underlying cylindrically 
symmetrical Tokamak state. To study possible bifurcations of equilibria to two’- 
dimensional states, we need to choose m and IZ to match the helical state of interest 
and to specify a(G) rather than a(r). We first consider the one-dimensional case. 

FIG. 3. Cylinder with identified ends. 



FINDING MAGNETIC ISLAND EQUILIBRIA 42 

. ID TOKAMAK MODEL 

FIG. 4. A comparison of current profile o(r) and flux G(r) for a commonly used Tokamak model 
and our simplified model. 

In Fig. 4a is shown a(r) for a commonly used model of the Tokamak (see 
Appendix A). In order for a bifurcated equilibrium with a small magnetic island to 
exist the one-dimensional equilibrium must have a singular surface rs [a maximum 
or minimum with G’(r,) = 01. The current profile C(Y) given by Fig. 4a leads to such 
a singular surface at rs = 0.5, as shown in Fig. 4b, where G(r) has been obtained by 
solving Eq. (7). Near Y = r,, G - G, -I G:‘x2/2, where x 3 r - Y,, since 6: = Q. 
However, cr N g‘s + cr:x, without a flat region near r = r, (see Fig. 4a), so that a(G) 
must be of the form o(G) - gs + cr(G, - G) ‘I2 To simplify the problem we assume . 
this form everywhere, although with different coefficients in the region to the left 
(region I) and right (region II) of the singular surface. This constitutes the model 
that we use subsequently, namely, 

a(G) = CT, 
+ a(G, - G)l”, region I, 
+P(G,- G)? region II. 

Summarizing, our one-dimensional model is as follows: 

L[G]=f(rG’)‘=F(G)=F, 
+ a(G, - G)1’2, region I, 
+B(G,- G)“*, region II, PI! 

where F, = -0.2066, 01= 5.9, and /? = - 2.5 (see Appendix B). 
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The boundary conditions that go along with Eq. (9) are 

G’(0) = 0 

G(r,) = G, 

G’(r,) = 0, (10) 

where the singular surface location r, (the location of the maximum of G) has been 
introduced as an additional variable. 

III. NUMERICAL METHODS IN ONE DIMENSION 

In this section we compare use of simple iteration and Newton’s method for 
solving Eq. (9). The first method is simple iteration. The next iterate G”“” is 
computed by solving the discretized version of 

L[Gne”‘] = F(G”ld), (11) 

where L[G] = l/r(rG’)’ for our model Tokamak problem. Equation (11) is first 
solved as a standard boundary value problem with the two boundary conditions 
Glnew(0) =0 and GneW(l)=O. A constant [equal to G,-G”““(r,)] is then added to 
this solution to obtain a solution with Gnew(r8) = G, [since a solution of Eq. (11) 
remains a solution when a constant is added to it]. Table I shows successive 
maximum absolute values of the residuals 

R = F(Gnew) -L[G”““] 

obtained using simple iteration. As seen, the method does not converge. The initial 
guess for this method and the other methods to be discussed was a quadratic or 
quartic expression. that had the same qualitative form as the exact solution shown 
in Fig. 4 and reproduced the exact solution values of G(O), G(r,), and G( 1). 

Iteration 

0 
1 
2 
3’ 
4 

TABLE I 

Sequence of Residuals for 1D Model 

Simple Newton 

0.235 0.235 
0.695e - 1 0.347e - 1 
0.125 0.802e - 3 
0.258 0.313e-5 
0.585 0.582e - 9 
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The second numerical method is Newton’s method. The change in 6, defined by 

6G c G”“” - G“ld 

is required to satisfy the equation 

L[dG] -g (Gold) 6G = R”ld =F(G”ld) - LIGoid]. 

The boundary conditions, given by Eq. (lo), involve the auxiliary variable r, which 
is defined by the condition G’(r,) = 0. We formally solve this equation to eliminate 
rs and obtain the boundary conditions 

G’(0) = 0, (‘13a) 

G[(G’)-’ (0)] = G,. 

Applying Newton’s method, we obtain 

6G’(O) = - G’old(Q) 

,,[(G’“‘“)-’ (0)] f G’“‘d[(G’o’d)--l (0)] 6[(G’)-’ (0)] = G,- G”‘d[(G’o’d)-- ( 

Because Grold [ (G’Old)- ’ (0)] = 0, the latter equation above may be written as 

bG(rfd) = 6, - G”‘d(r:‘d), 

where rzld is (G”ld)-’ (0). 
Difficulties occur because of the square root in the definition of F(G). First, the 

argument can be negative since Eq. (14) is only a linear approximation to the con- 
dition max(G”ld + 6G) = G,. This is easily taken care of by extending the de~~itio~ 
of F(G) to the case G > G,. Such an extension occurs naturally in the two-dimen- 
sional case. Second, because of the square root, the derivative in Newton’s method 
is unbounded. One must design a special one-dimensional code to handle this 
singularity. 

The sequence of residuals for Newton’s method are shown in Table I. The 
number of r mesh points for all one-dimensional calculations was 1000. 

IV. ANALYSIS OF THE ONE-DIMENSIONAL CASE 

To analyze the behavior under iteration of the one-dimensional version of 
Eq. (3), we consider the more general equation 

where f is a numerical parameter such that f = 0 gives simple iteration and f = 1 
Newton’s method. Now consider G(r) to be very close to the solution G,(r) 

581/79/Z-12 
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and let G(r)= G,(r)+ g(r). (Whether Eq. (15) has a solution was originally 
addressed by us in an appendix of a longer version of this paper. It has recently 
been shown (14) that equations of a type more general than Eq. (15) have unique 
solutions.) Linearizing the residual R, we obtain 

R-~(G) g-Ugl, (16) 

using the fact that Go satisfies F(G,) = L[G,]. Substituting Eq. (16) into Eq. (15), 
we can write 

aF new ux”““l -f Tgj g aF =dG (1 -f) gold, (17) 

where g”“” 2 g + 6g and goId = g. The convergence or divergence of Eq. (17) under 
iteration is governed by the largest absolute eigenvalue 111 of the linear problem 
defined by the equation 

J. 
i 
ml-fgg =gwg, 

) 

and in fact for (A( < 1 the kth iterate is asymptotically given by 

Gck) N G, + Akg (19) 

for large k (in nondegenerate cases), where g satisfies Eq. (18) (and does not change 
with k). 

An eigenvalue 1 of Eq. (18) is related to an eigenvalue 1, of the simpler problem 

&‘ml =g g* (20) 

This relation is 

A,= A 
1 -f+Af’ 

or 

,=&(1-f) 
l-&f’ 

(21) 

(22) 

Note that the convergence factor I is given by 1= 1, for simple iteration and il = 0 
for Newton’s method. Since dA/d&, is always nonnegative for f < 1, eigenvalues are 
not reordered by Eqs. (21) and (22) and the largest eigenvalues 1 and & satisfy 
Eqs. (21) and (22). 

The boundary conditions for Eq. (20) or (18) are as given in Section III, Eq. (10). 
In practice Eq. (20) is solved as a standard boundary value problem with g(1) 
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FIG. 5. Solution of the eigenvalue problem describing simple iteration. The eigenvalue 1, (con- 
vergence factor) is 2.05 corresponding to divergence; the form of the divergent mode is given by g(r). 
With 1, = 1, the solution of the differential equation does not satisfy the boundary condition g(r,) = 0. 

specified. Then 1, is varied to satisfy g(r,) = 0. In Fig. 5 we show the largest eigen- 
value solution g of Eq. (20) for our model Tokamak problem. The eigenvalue 1, is 
found to have the value Lo = 2.05. 

The requirement J.* < 1 is, from Eq. (22), 

f>;+$ 
0 

(23) 

or f > 0.74 in this case. We find that this is the limiting value off for convergence 
observed numerically. In Table II are shown the sequence of residuals for Eq. ( 15) 
withy= 0.8. As seen, the absolute value of the convergence factor is 0.64. This result 
agrees with Eq. (22), which predicts I = -0.64 for f = 0.8 .and i, = 2.05. 

Table II 

Sequence of Residuals, 1D Model Using Partial Newton (f = 0.8) 

Iteration n R, Rn + 11% 

0 0.235 0.115 
1 0.271e - 1 0.097 
2 0.262e - 2 0.508 
3 O.l33e-2 0.634 
4 0.843e - 3 0.63 1 
5 0.532e - 3 0.643 
6 0.342e - 3 0.641 
7 0.220e - 3 0.640 
8 O.l41e-3 0.440 
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We observe from Eq. (22) that unless f is exactly 1, ,4 will have some nonzero 
value and we therefore have linear convergence. Only the case f = 1 (Newton’s 
method) gives superlinear convergence, as is known in a more general context (see, 
e.g., Ref. [S]). 

The general form of the operator L in the one-dimensional case is given by 

(24) 

with 

UE r 
m2 + k2r2’ 

We shall show in Appendix C that in this case, simple iteration will be unstable 
whenever, aF/l;/dG<O, kH/m >O in (0, rs), and m2>0.236 k2rz. For the Tokamak 
equilibria these conditions are satisfied and we expect that simple iteration will 
always be unstable toward an approximately one-dimensional mode. 

V. SOLUTIONS IN Two DIMENSIONS 

The previous discussion leading to Eq. (9) was based on consideration of one- 
dimensional equilibria. The physical problem of interest is the computation of a 
nearby two-dimensional equilibria having a small magnetic island. The contour plot 
for such an equilibrium is shown in Fig. 6. There are now three flux regions because 
of the more complicated topography possible in two dimensions. These regions will 
be defined as the axis region (region I), the wall region (region II), and the island 
region (region III), as illustrated in Fig. 6. A reasonable physical approximation is 

‘ REGION III 

FIG. 6. Contour plot of G(r, U) for a two-dimensional solution of the equilibrium equation with a 
magnetic island. 
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to assume that the form of F(G) in regions I and II is given as in the one-dimen- 
sional case by Eq. (9), with singular surface values identified with X-point values. 
Unfortunately, because of the square root, the derivative in Newton’s method is 
unbounded. However, in the two-dimensional case it is unphysical to have such a 
singularity, so we use the following replacement J’m --+ Jm - Xb 
where d is small compared to the maximum value of G, - 6. (The results given 
have d = 10P4.) The flux in the island region, G, - G,, is small for a small island 
and F(G) in the island region will be assumed to be representable by a two-term 
Taylor series as follows: 

F(G) = f’x + Y(G - G,), region III. 

where y is an additional free parameter of the problem (the justification for this 
form involves physical considerations outside the scope of this paper). To determine 
y we impose another boundary condition which is that 6, be specified. Note that 
by specifying G, # G,, we ensure that the solution will not be the one-dimensional 
solution. It is not, however, essential to do this and solutions can be obtained with 
y specified. 

The two-dimensional problem is slightly complicated by the additional parameter 
y. The Newton’s step of the two-dimensional problem satisfies the equations 

where 6y is the change in y necessary to satisfy the additional boundary condition. 
The boundary conditions for the two-dimensional problem are 

aG 0 -= 
dr ’ 

Y = 0, 

6 = 0, 62 
m’ 

and r= 1, 

Gx, Go specified. 

In Table III we compare the sequence of residuals for Newton’s method and for 
simple iteration, where the aF/‘/aG term on the left-hand side of Eq. (26) is absent. 
The initial guess was again a quadratic or quartic form reproducing the topography 
of the desired solution and with Gaxis, G,,,,, G,, and G, having values close to or 
equal to the solution values. As seen from Table III, simple iteration diverges as 
expected, while Newton’s method converges. A contour plot of the solution G(r, u) 
is shown in Fig. 6. The number of mesh points for these calculations was 21 u’s and 
216 Y’S. 
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Table III 

Sequence of Residuals for 2D Case with Magnetic Island 

Iteration Simple Newton 

0 0.237 0.237 
1 0.686e - 1 0.235 
2 0.146 0.301e - 1 
3 0.318 0.562e - 3 
4 0.643 O.l49e- 7 

VI. DISCUSSION 

There are several considerations in choosing a method to solve the helically 
symmetric plasma equilibrium equation, Eq. (2), or possibly some analogous 
equation in three dimensions. Among them are convergence, rate of convergence, 
and solution of the linear problem. 

The absolutely essential feature of any iteration scheme is that it converge rather 
than diverge for a sufficiently good initial guess. For calculation of equilibria with 
magnetic islands it is necessary to use something other than simple iteration to 
obtain convergence. 

Rate of convergence is also very important. For the physical problem of evolving 
equilibria, where a sequence of nearby equilibria is calculated, Newton’s method is 
the method of choice on the basis of rate of convergence, because Newton’s method 
has superlinear convergence, as discussed in Section IV. ’ 

The radius of convergence is not guaranteed to be large with Newton’s method 
and in many problems this leads to difficulties in obtaining a sufficiently accurate 
initial guess. Powerful techniques for handling this difficulty are continuation 
(homotopy) methods [lo, 111. For the problem of calculating plasma equilibria 
with small magnetic islands there is a natural one-dimensional approximation (the 
linearized equilibrium equation with derivative discontinuity across the singular’ 
surface [9] that we find to provide an adequate initial guess. Note, however, that 
radius of convergence is not a major issue for evolution of equilibria, again arguing 
for Newton’s method. 

The linear problem to be solved is of the form 

(27) 

where ;1= 0 for the case of simple iteration. Efficient methods are readily available 
for solving this equation for 1= constant, but not necessarily for ,? = n(r, u). We 
have used a direct banded matrix inversion routine based on having the number of 
Y mesh points much larger than the number of u mesh points, which is the situation 



FINDING MAGNETIC ISLAND EQUILIBRIA 429 

for representation of small magnetic islands. Multigrid methods [ 121 for solving 
Eq. (27) with L = A(r, u), or iterative methods such as the conjugate-gradient 
method, [13] may also be used. 

It is our conclusion that Newton’s method, although not traditionally used for 
the magnetic equilibrium problem, generally offers important advantages in rate af 
convergence that justify its greater complexity. Vis-a-vis simple iteration, Newton’s 
method is necessary for certain problems, such as the problem of magnetic i&n 
considered here. We believe that these considerations apply to the three-dimen- 
sional case as well and that Newton’s method should be incorporated in the design 
of future three-dimensional equilibrium codes. 

APPENDIX A. TOKAMAK MODEL 

A commonly used tokamak model [7] assumes a q profile of the form 

rB,(r) q(r) c - = 
Rfb(r) 

(q is the winding number of the magnetic field--q = number of toroidal transits of 
a magnetic field line in one poloidal transit, also known as the safety factor). Our 
model calculations assume Eq. (A.l) with r,,= 0.8a. The condition for a singular 
surface at radius r, is nq + m = 0, which can be solved to find the constant C, 

c= -m 
nC1 + (rs/rd21 

Note that the condition nq(r,) + m = 0 is equivalent to G’(r,) = 0, with G defined by 
Eq. (1). 

It is necessary to find the current profile g.(r) associated with given q profile. The 
one-dimensional equilibrium relations from V x B = aB are 

Equations (A.3) and (A.l) allow one to derive the desired relationship: 

1 2q-q’r 
‘=zq2tr2;R2. (A.4) 
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APPENDIX B 

In this appendix, we derive a model one-dimensional problem. Consider Eq. (7) 
with o(G) given by Eq. (8) in region I. By the transformation G - G, + G, we can 
assume G, = 0. Three boundary conditions are 

G’(0) = 0, 

G(r,) = 0, 

G’(r,) = 0. 

Since Eq. (7) is second order and requires two boundary conditions, the additional 
condition specifies a, if we image cr, to be fixed. With r,=OS and (T, = 0.23 (to 
match Fig. 4a) the solution turns out to have a = 5.9 and results in the dashed 
curves shown in region I of Fig. 4a. 

In region II, two boundary conditions are 

G(r,) = 0, 

G’(r,) = 0. 

Specifying oS to match region I, /I is still a free parameter. The value of /I may be 
fixed by requiring that G(1) match the value given by Fig. 4b. The solution 
obtained this way turns out to have /I= -2.5 and gives the dashed curve shown in 
regions II of Fig. 4. Note that because /I # -a, (T’ has a discontinuity at r = r,. 
Choosing j3 = -a eliminates this discontinuity but results. in poorer overall fits to 
o(r) and G(r). 

APPENDIX C. INSTABILITY OF SIMPLE ITERATION 

In this appendix, we show that simple iteration will never converge when applied 
to Eq. (18), at least in the Tokamak case (m’ 9 k’rz, F given by Eq. (9)). 

Let us reiterate the problem. We are interested in the possibility of finding real 
solutions to the nonlinear equations 

L[G]=h(UG’)‘=F(G,r)= -H g+m22+mkk2r2 1 , 

G’(0) = 0, (C.1) 

G(rJ = G, 

G’(r,) = 0, where rs is the first zero of G’ with r, > 0, 

by simple iterations of the form 

L[~“““] -fg f=” =g (1 -f) gold 
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with 0 <f < 1. We have shown in the body of this paper that the iteration con- 
verges or diverges depending upon whether or not the largest absolute eigenvalue 
I4 of 

is less than 1, assuming that (C.l) has a solution. Since any solution is determined 
only to an additive constant, we can assume that G(r,) = G,= 0. Without loss of 
generality, G may be assumed negative, except at r,, where it is zero, and since 6’ 
is of one sign on (0, rs), we must have G’ > 0 on (0, r,) (the physically irrelevant 
transformation k -P -k, m -+ -m changes the sign of G). Recall that 
U = r/(m” + k2r2). Define the inner product of functions on [0, r,] by 

(v, w) = ji VW U dr. 

Let h = 6’ in what follows. 
We know that simple iteration is unstable if and only if solutions to 

which satisfy 

h>O in (03 rs), 

h(r,) = dr,) = 0, 

We can prove the following theorem, which depends upon a standard lemma that 
is established after the proof of the theorem. 

THEOREM. We have 

where G, g, and 1 satisfy (C.3) and h = G’. 
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ProoJ: Since 

we can write 

F(G, r) = F,(G) + f H(k2rU) 

where 

dH 2k 
F,(G)=-H z+m . [ 1 

Equations (C.3) can be rewritten as 

Now note that 

Thus, we have 

$(L[Gl)=$, 

L[h]-t $ ‘h=$ 0 
nhL[g]= f-g g. ( 3 

If we multiply the first equation in (C.7) by g, we have 

gL[h]+ ; 'h&g ( > 
llhL[g]= z-t& g. ( 3 

Integrating with respect to Udr gives 

((35) 

(C.7) 

(C.8) 

(C-9) 
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By Lemma 1, L is self-adjoint, so we have 

Using the second equation in (C.3) gives 

=((;y,hg)-;(H(kzrC)‘, g). 

433 

(C.lQ) 

(C.11) 

This proves the theorem. A corollary of this theorem establishes the instability of 
simple iteration whenever m2 > 0.236 k2r3, dF/aG < 0, and (2k/m)Ha 0. Again, the 
necessary lemmas will be delayed until after the proof of the corollary. 

COROLLARY. Simple iteration is unstable when (2klm) H> 0, dF/dG < 0, and 
m2>(fi--2)k2r:. 

ProoJ Recall that h 3 0. Note that 

u 
( > 

5k4r4 - (m’ + 2k2r2)2 
u= r’(m’+ k2r2)2 ’ 

(C.12) 

If m’>(fi--2)k “r,’ 2 (3 - 2) k2r2, then m2 + 2k2r2 > & k2r2 and then (V/U)’ 
is always negative. 

Since - L is symmetric and positive definite (see Lemma 1 ), the eigenvalues 1 in 
the second equation in (C.6) are positive (see Lemma 2). Since the Green’s function 
of -L is pointwise positive (see Lemma 3), the eigenfunction g belonging to the 
largest eigenvalue is pointwise positive (see Lemma 4). Thus, the right-hand si 
Eq. (C.5) is negative. The integral on the left-hand side of (C.5) is negative, so we 
must have J > 1. This establishes the corollary. 

Remark. This is clearly the case for the Tokamak (see Section II). 

Now we prove the necessary lemmas. 

LEMMA 1. The operator L is negative definite and self-adjoint with respect to the 
inner product ( .,.) on the space of functions which vanish at rS. 

Prooj Note that 

(A Lg)=jlf k(Ugf)’ Udr=fUg’Iz-/:f.‘Ug’dr= -(f’, g’). 

Thus we clearly have (Lf, g) = (f, Lg) and if (f, Lf) = 0, then f’ = 0 so f z 0 since 
I?,) = 0. 
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LEMMA 2. If w(r) is positive, the eigenvalues I in 

-iLg= w(r) g (C.13) 

are positive. 

Prooj Since 

and - (l/fiW(l/J) w is a symmetric positive-definite operator if -L is, the 
eigenvalues in (C.13) are positive. 

LEMMA 3. The Green’s function of -L is pointwise positive on [0, r,]. 

ProoJ The Green’s function is seen t6 be 

G(s, r) = 
U(s) s: l/U dx, r, Z r > s, 

U(s) j-p l/U dx, s>r>O 

which is easily seen to be positive. 

LEMMA 4. The eigenfunction g corresponding to the largest eigenvalue of (C.13) 
is pointwise positive. 

ProoJ Clearly the Green’s function H for - (l/fi)L( l/h) is & G ,,/% 
where G is the Green’s function of -L. Let us show that the eigenfunction 
4 = fi g corresponding to the largest eigenvalue of 

for symmetric pointwise positive H(x, JJ) is positive. We use the fact that 

Now~P=q5+-$- whereq5+=max(4,0)and&=(-q4)+. Wemayassume#+#O. 
Clearly, 114 + + q4 ~ 11 = I/ 4 II. In addition, 

Since H is pointwise positive, (H&, 4’) = (Hq4+, qF) 2 0 and the above is larger 
than (HqJ 4) unless d- = 0. Since q5 supposedly gave the maximum, qz- must be 
zero. 
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